The 3-dimensional Lyness map and a self-mirror log Calabi–Yau 3-fold
نویسندگان
چکیده
Abstract The 2-dimensional Lyness map is a 5-periodic birational of the plane which may famously be resolved to give an automorphism log Calabi–Yau surface, given by complement anticanonical pentagon $$(-1)$$ ( - 1 ) -curves in del Pezzo surface degree 5. This has many remarkable properties and, particular, it mirror itself. We construct 3-dimensional big brother this considering map, 8-periodic map. variety we obtain special (non- $${\mathbb {Q}}$$ Q -factorial) affine Fano 3-fold type $$V_{12}$$ V 12 , and show that self-mirror 3-fold.
منابع مشابه
Some properties of the k-dimensional Lyness’ map
This paper is devoted to study some properties of the k-dimensional Lyness’ map F (x1, . . . , xk) = (x2, . . . , xk, (a + ∑k i=2 xi)/x1). Our main result presentes a rational vector field that gives a Lie symmetry for F. This vector field is used, for k ≤ 5, to give information about the nature of the invariant sets under F. When k is odd, we also present a new (as far as we know) first integr...
متن کامل3-fold Log Flips According to v. v. Shokurov
We review §8 of V. V. Shokurov’s paper ”3-fold log flips”.
متن کاملSemistable 3-fold Flips
1 Introduction. In this short note, I will give a proof of the existence of semistable 3-fold flips, which does not use the classification of log terminal (i.e., quotient) surface singularities. This permits us to avoid a calculation, which is a sort of logical bottleneck in all the existing approaches to semistable 3-fold flips ([Ka1 pg. 158–159], [Sh pg. 386–389], [Ka3 pg. 483–486]), however ...
متن کاملa comparative study of the relationship between self-, peer-, and teacher-assessments in productive skills
تمایل به ارزیابی جایگزین و تعویض آن با آزمون سنتی مداد و کاغذ در سالهای اخیر افزایش یافته است. اکثر زبان آموزان در کلاس های زبان از نمره نهایی که استاد تعیین میکند ناراضی اند. این تحقیق جهت بررسی ارزیابی در کلاس های زبان انگلیسی به هدف رضایتمندی زبان آموزان از نمره هایشان انجام گرفته است که در آن نمرات ارائه شده توسط سه گروه ارزیاب (ارزیابی خود دانشجو، همسالان واستاد) در مهارت های تولید (تکل...
15 صفحه اولLog Mirror Symmetry and Local Mirror Symmetry
We study Mirror Symmetry of log Calabi-Yau surfaces. On one hand, we consider the number of “affine lines” of each degree in P\B, where B is a smooth cubic. On the other hand, we consider coefficients of a certain expansion of a function obtained from the integrals of dx/x ∧ dy/y over 2chains whose boundaries lie on Bφ, where {Bφ} is a family of smooth cubics. Then, for small degrees, they coin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Manuscripta Mathematica
سال: 2023
ISSN: ['0025-2611', '1432-1785']
DOI: https://doi.org/10.1007/s00229-023-01497-0